Hi! I’m Eric, and I’m a PhD student in the Reasoning and Learning Lab at McGill University, supervised by Joelle Pineau. You can download my CV here, and find me on google scholar here.
I’m interested in many areas of machine learning and cognitive science, but recently my main focus has been on object discovery. More concretely, I’ve focused on how to build deep probabilistic neural networks that can learn to detect and track objects in the visual stream without supervision. I’ve built systems that can discover objects in images, videos, and, most recently, 3D worlds. I’m also interested in how to build systems that can reason in terms of objects in ways that exploit their compositionality.
In 2014 I completed a Masters degree in Computer Science in the Computational Neuroscience Research Group at the University of Waterloo. I was supervised by Chris Eliasmith, and worked on a biologically plausible model of human knowledge representation. I also wrote an MPI implementation of the nengo neural simulator. In 2012 I obtained a BMATH(CS) degree, also from Waterloo, and spent my co-op terms working on a GPU implementation of nengo.
When not working I like to travel, hike, play sports (squash, running and ultimate currently), play board games, and read books, especially sci-fi and non-fiction. My favorite authors are Kim Stanley Robinson, Neal Stephenson, Greg Egan, and Dan Dennett.
News
My paper Learning 3D Object-Oriented World Models from Unlabeled Videos received an Outstanding Paper Award at the Object-Oriented Learning workshop at ICML 2020.
Conference / Journal Articles
Exploiting Spatial Invariance for Scalable Unsupervised Object Tracking.
Eric Crawford and Joelle Pineau.
AAAI (2020). [code] [project] [supplementary] [arxiv]
Spatially Invariant Unsupervised Object Detection with Convolutional Neural Networks.
Eric Crawford and Joelle Pineau.
AAAI (2019). [code] [supplementary]
BanditSum: Extractive Summarization as a Contextual Bandit.
Yue Dong, Yikang Shen, Eric Crawford, Herke van Hoof and Jackie C.K. Cheung.
EMNLP (2018).
Modeling interactions between speech production and perception: speech error detection at semantic and phonological levels and the inner speech loop.
Bernd J. Kroger, Eric Crawford, Trevor Bekolay and Chris Eliasmith.
Frontiers in Computational Neuroscience (2016).
Biologically plausible, human-scale knowledge representation.
Eric Crawford, Matthew Gingerich and Chris Eliasmith.
Cognitive Science (2015). [code]
Biologically plausible, human-scale knowledge representation.
Eric Crawford, Matthew Gingerich and Chris Eliasmith.
Conference of the Cognitive Science Society (2013). [code]
Workshops, Preprints, Theses, Reports
Learning 3D Object-Oriented World Models from Unlabeled Videos.
Eric Crawford and Joelle Pineau.
ICML Workshop on Object-Oriented Learning (2020). Outstanding Paper Award.
Spatially Invariant, Label-free Object Tracking.
Eric Crawford and Joelle Pineau.
NeurIPS Workshop on Perception as Generative Reasoning (2019). Spotlight. [code]
Self-supervised Learning of Distance Functions for Goal-Conditioned Reinforcement Learning.
Srinivas Venkattaramanujam, Eric Crawford, Thang Doan, and Doina Precup.
arXiv preprint arXiv:1907.02998 (2019).
Spatially Invariant Attend, Infer, Repeat.
Eric Crawford and Joelle Pineau.
NeurIPS Workshop on Modeling the Physical World (2018). [code] [poster]
Sequential Coordination of Deep Models for Learning Visual Arithmetic.
Eric Crawford, Guillaume Rabusseau and Joelle Pineau.
arXiv preprint arXiv:1809.04988 (2017).
Policy Gradient Methods for Reinforcement Learning.
Eric Crawford.
Ph.D. Comprehensive Exam, McGill University (2015).
Biologically plausible, human-scale knowledge representation.
Eric Crawford.
Master of Mathematics Thesis, University of Waterloo (2015). [code]
Learning large-scale heteroassociative memories in spiking neurons.
Aaron Voelker, Eric Crawford and Chris Eliasmith.
Unconventional Computation and Natural Computation (2014).