
Supplementary Material for
“Exploiting Spatial Invarance for Scalable Unsupervised Object Tracking”

A Module Details
A.1 Propagation
The majority of the propagation module was described in
Section 3.4. Here we provide a few additional details.
Attribute Updates. In Section 3.4 we described functions
fwhere, fwhat and f depth which perform propagation updates:
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Here sigm stands for the sigmoid function. Finally, fwhere is a
complicated function (imported from SQAIR) that is difficult
to summarize succinctly here; see the accompanying code
for details. Investigating whether the where update can be
replaced with something simpler should be a target of future
ablation studies.
Recurrent hidden state. For propagation we assume an ad-
ditional object attribute ohidden

(t) , which stores the hidden state
of a recurrent neural network prnn

φ and is fully deterministic.
This hidden state of each object is provided as an additional
argument to the spatial attention module which builds fea-
tures for propagation. After each propagation step, the hidden
state for each object is updated independently by running the
recurrent network, taking the new object attributes as input:

õhidden = prnn
φ (ohidden

(t−1), õ
where, õwhat, õdepth, õpres)

We can think of the hidden state as providing the propagation
module with a deterministic path from an object’s past to
the present. Newly discovered objects are given a default
initial hidden state. The value of the default hidden state is a
trainable parameter.

A.2 Rendering
The rendering module is the sole constituent of the VAE
decoder. It takes in the current set of objects o(t) and renders
them into a frame. We start by focusing on a single object
with index k, and drop temporal indices. First, an appearance
map and a partial transparancy map are predicted:
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βk = sigmoid(µβ + σββlogit
k )

ξk = sigmoid(µξ + σξξlogit
k )

The appearance map βk has shape (Hobj,Wobj, 3), while the
partial transparency map ξk has shape (Hobj,Wobj, 1), for
integers Hobj, Wobj. Meanwhile σβ , µβ , σξ and µξ are scalar
hyperparameters that can be used to control the relative speed
with which appearance and transparency are trained.
ξk is multiplied by opres

k to ensure that objects are only
rendered to the image to the extent that they are present,
yielding a final transparency map:

αk = ξk · opres
k

Next we combine αk with odepth
k to get an importance map:

γk = αk · odepth
k

For each object, an inverse spatial transformer parameterized
by owhere

k is then used to create image-sized versions of these
three maps, with the input maps placed in the correct location:
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For each location in one of these image-sized maps, the value
is obtained from a corresponding location in the input space,
dictated by the location parameters owhere

k . However, some of
these locations will lie “outside” of the input map, and for
these locations we use a default value. In particular, we use a
default of 0 for α and β, and −∞ for γ.

To obtain the output frame, the image-sized appearance
maps are combined by weighted summation. For each pixel
we take the softmax (over objects) of the importance values,
and weight each object by the resulting value. We also weight
by α′ to implement transparency. Thus we have:
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Here λ is a hyperparameter that acts as the temperature of the
softmax. When a given pixel is within the bounding boxes
of two or more objects, the softmax implements a differen-
tiable approximation of relative depth, and objects with larger
values for odepth (and thus larger values for γ, all else being
equal) are rendered on top of objects with lower values. The
default of −∞ used when spatially transforming γ ensures
that objects do not contribute to the softmax for pixels that
are not within their bounding box.

Note that all computations in this section can be paral-
lelized to a high degree (i.e. across objects). However, for



large frames this scheme can still be expensive in terms
of both memory and computation. Thus in practice we
use an equivalent (but more complex) implementation that
avoids explicitly constructing image-sized maps for each ob-
ject. The output of rendering is an image with dimensions
(Hinp,Winp, 3); to obtain gφ(x|z), we use this image to pa-
rameterize a set of (conditionally) independent Bernoulli
random variables, one for each pixel and channel.

B Spatial Attention
In this section we provide details on the spatial attention
steps used in the discovery and propagation modules. Both
are similar to Neural Physics Engine (Chang et al. 2016),
though more so for the Propagation version.

B.1 Spatial Attention for Discovery
Recall that in the discovery module, spatial attention is used
to obtain, for each discovery unit, a feature vector summa-
rizing nearby propagated objects. The main motivation is to
allow the discovery module to avoid rediscovering objects
that are already accounted for:

vtd
(t) = SpatialAttentiondisc

φ (õ(t), σ)

We first narrow our focus to a single discovery unit with
indices ij. For every propagated object õk (dropping temporal
indices here), we first use an MLP dspatial

φ to compute a feature
vector that is specific to ij. As input to this MLP, we supply
the object õk, except that we replace the position attributes
õyk, õxk with relative position attributes õy

′

ij,k and õx
′

ij,k. Here
we are assuming that what is important is the position of the
propagated objects relative to the grid cell, rather than their
absolute positions. Noting that the center of grid cell ij has
location

((i+ 0.5) · ch, (j + 0.5) · cw)

we have
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The spatial attention module then just sums these feature
vectors over propagated objects k, weighted by a Gaussian
kernel:
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x′

ij,k, σ) · dspatial
φ (õ
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where G is the density of a 2 dimensional Gaussian, and õ\yxk
contains all attributes of õk except y and x. Note that this
can be computed for all ij and k in parallel (except for the
summation over k).

B.2 Spatial Attention for Propagation
In the propagation module, spatial attention is used to com-
pute a feature vector for each object from the previous step,
which is subsequently used to predict updates to the attributes
of the object.

utd
(t) = SpatialAttentionprop

φ (o(t−1), σ)

This vector is supposed to take into account attributes of
the object itself, as well as attributes of nearby objects. This
should allow the updates to take into account the effect of
nearby objects on the target object.

We first narrow our focus to a target object with index `.
We use an MLP ptd

φ to compute an initial feature vector:
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Then for every object k we compute the position of object k
relative to object `:
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Next we use an MLP pspatial

φ to get feature vectors for ok in
the context of target object o`. This is similar to discovery,
except the MLP also takes utd′

` as an argument. The results
are summed and weighted by a Gaussian kernel, and then
utd′
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We can think of the second term as computing the additive
effect of nearby objects on the target object. Again this can be
computed for all ` and k in parallel (except the summation).

C Baseline Algorithm: ConnComp
We compare against a simple baseline algorithm called Con-
nComp (Connected Components), which works as follows.
For each frame a graph is created wherein the pixels are
nodes, and two pixels are connected by an edge if and only if
they are adjacent and have the same color. We then extract
connected components from this graph, and call each con-
nected component an object. This yields a set of objects for
each frame. In order to track objects over time (i.e. to assign
persistent identifiers to the objects), we employ the Hungar-
ian algorithm to find matches between detected objects in
each pair of successive frames (Kuhn 1955). As matching
cost we use the distance between object centroids, and re-
quire that matching objects have the same color (objects pairs
with mismatched colors are assigned a cost of∞). The per-
formance of ConnComp can be interpreted as a measure of
the difficulty of the dataset; it will be successful only to the
extent that objects can be tracked by color alone.

D Experiment Details
D.1 Scattered MNIST
Each video had spatial size 48×48 pixels. MNIST digits were
resized to 14× 14 pixels (their original size being 28× 28.
Initial digit velocities vectors were sampled uniformly, with a
fixed magnitude of 2 pixels per frame. Digits passed through
one another without event, and bounce of the edges of the
frame. Initial digit positions were sampled randomly, one
digit at a time. If the cumulative overlap between a newly
sampled digit position and existing digit positions exceeded



a threshold (98 pixels), the digit position was resampled
until the threshold was not exceeded. This allowed us to
control the amount of overlap between digits on the first
frame. On subsequent frames, no overlap limit is enforced,
and indeed because objects pass through one another and
bounce of frame borders, the degree of overlap can be quite
high in subsequent frames. In such cases, networks need to
use information about the locations and trajectories of the
overlapping objects at previous timesteps in order to track
well.

The 60,000 MNIST digits were divided up into 80% train-
ing set, 10% validation set, and 10% test set. Videos for
training set were created by uniformly sampling the number
of digits to put in the video (from distribution Uniform(1, 6)
or Uniform(1, 12) depending on the training condition), and
then sampling that number of digits from the set of train-
ing digits. Similar approaches were taken for validation and
testing; this ensures that at test time, networks are seeing
digits that they have never seen before. We created 60,000
training videos and 1000 validation videos for each training
condition, and 1000 videos for each testing condition (i.e. for
each position on the x-axis of the plots in Figure 5 of the
main text).

D.2 Scattered Shapes
Videos in the Scattered Shapes dataset were created in a
manner similar to Scattered MNIST, with a few exceptions.
Possible colors were red, green, blue, cyan, yellow, magenta,
and possible shapes were circle, diamond, star, cross, x. All
shape/color combinations were present in training, validation
and test datasets. Initial pixel velocities had a fixed magnitude
of 5 pixels per frame rather than 2. Additionally, when adding
a shape to a video, it’s size was randomized by choosing
each spatial dimension from a Normal(µ = 14, σ = 1.4)
distribution.

E Model and Training Details
E.1 SILOT
SILOT was implemented in tensorflow, and is available
online at https://github.com/e2crawfo/silot.
Hyperparameters are listed in Table 1. Recall that we trained
SILOT using a curriculum, starting training on the initial
2 frames of each video, and increasing by 2 frames every
Ncurric timesteps until the network is training on full videos.
Once the network is training on full frames, we begin an
early stopping regime wherein we train until the measure of
performance (in most cases, MOTA on the validation set)
does not improve for 30,000 training steps (i.e. using a “pa-
tience” value of 30,000, at the level of training steps rather
than epochs), triggering an early stop. Each time an early
stop is triggered, we go back to the set of weights that has
the best performance so far, divide the learning rate by 3, and
resume training. Training ends once early stopping has been
triggered 3 times. We take as our final hypothesis the set of
weights that achieved the best performance on the validation
set.

Finally, for the first 1000 update steps we do not backprop-
agate gradients through where, depth, or pres attributes. With-

out this initial period, the component networks responsible
for encoding and decoding appearance information (partic-
ularly dobj

φ , pobj
φ and robj

θ ) are initially poor at reconstructing
any part of the scene, and the network often realizes that
it can reduce the reconstruction loss by simply turning all
of the objects off or shrinking them into oblivion. Both of
these possibilities are very poor local minima, and need to be
avoided. Additionally, we use a prior for the pres attributes
which starts by encouraging the network to use many ob-
jects, but over time is annealed into a prior that encourages
using few objects (using a very similar approach to SPAIR
(Crawford and Pineau 2019)).

SILOT contains a relatively large number of component
networks. Table 2 lists these networks, along with descrip-
tions of their role and architecture. The architecture of the
backbone convolutional network dbu

φ is:
[Conv(n=128, f=4, s=3, nl=RELU)
Conv(n=128, f=4, s=2, nl=RELU),
Conv(n=128, f=4, s=2, nl=RELU),
Conv(n=128, f=1, s=1, nl=RELU),
Conv(n=128, f=1, s=1, nl=RELU),
Conv(n=128, f=1, s=1, nl=None)]

where n gives the number of filters, f gives the filter width,
s gives the stride and nl gives the non-linearity used. No
pooling is used at any point.

E.2 SQAIR
For our implementation of SQAIR, we used a lightly
modified version of the original implementation:
https://github.com/akosiorek/sqair.
Initial tuning of hyperparameters was performed by
hand (starting from the default values) until a reasonable
range of values for the Scattered MNIST dataset was
identified. As model-selection criteria, we used the MOTA (a
measure of object tracking performance) averaged over 1–6
digits for the 1–6 training case, and averaged of 1–12 digits
for the 1–12 training case. We ran an additional grid search
over select hyperparameters.

F Experiment Visualizations
A visualization of a forward pass of SILOT on the Scattered
MNIST task is shown in Figure F1, and on the Scattered
Shapes task in Figure F2.

G Additional Experiments
G.1 Scattered MNIST - Propagating with Prior
As detailed in Section 3.8, we trained a learned prior for the
propagation latent variables in addition to the static prior.
This can be viewed as a duplicate of the main propagation
module, except that it does not have access to the frame each
time step. Here we test the performance of that module in the
Scattered MNIST task. The evaluation procedure is similar
to the one used in SQAIR for the same purpose (Kosiorek
et al. 2018), and runs as follows. For the first 3 timesteps,
the regular network is used (with the regular propagation
module), in order to discover objects and estimate their initial
trajectory. For the remaining 5 frames the discovery module is

https://github.com/e2crawfo/silot
https://github.com/akosiorek/sqair


Description Variable Value
Initial learning rate 0.0001
Batch size 16
Max gradient norm 10.0
Optimizer Adam
Patience 30,000
# of training steps for each stage of curriculum Ncurric 40,000
Probability of discovery dropout pdd 0.5

Number of propagated/selected objects K 16
Dimension of what attribute A 64
Anchor box size in pixels (ah, aw) (48, 48)
Grid cell size in pixels (determined by structure of dbu

φ ) (ch, cw) (12, 12)
Bounds on distance between object center and grid cell center in disc. (bmin, bmax) (-0.5, 1.5)
Standard dev. of Gaussian kernel for spatial attention σ 0.1

Prior on z̄h, z̄w Normal(µ = −2.2, σ = 0.5)
Prior on z̄y, z̄x Normal(µ = 0, σ = 1)
Prior on z̄what Normal(µ = 0, σ = 1)
Prior on z̄depth Normal(µ = 0, σ = 1)
Prior on z̄pres See Section E.1

Prior on z̃h, z̃w Normal(µ = 0, σ = 0.3)
Prior on z̃y, z̃x Normal(µ = 0, σ = 0.3)
Prior on z̃what Normal(µ = 0, σ = 0.4)
Prior on z̃depth Normal(µ = 0, σ = 1)
Prior on z̃pres See Section E.1

Appearance offset and scale µβ , σβ (0.0, 2.0)
Transparency offset and scale µξ, σξ (5.0, 0.1)
Rendering softmax temperature λ 0.25
Rendered object size (Hobj ,Wobj) (14, 14)

Table 1: Base hyperparameter values for SILOT.
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Figure F1: Visualizing a forward pass of a trained SILOT network applied to a video from the Scattered MNIST task containing 8
objects. Top / Bottom: Ground truth / reconstructed frames with bounding boxes for detected objects overlaid. Middle: Predicted
appearances for detected objects. Box color represents object identity according to the network. Boxes for objects that SILOT
has discovered in a given frame are dashed, while boxes for objects propagated from the previous frame are solid. Notice that the
network is able to track objects even after they have passed completely through other objects (e.g. 5 with the green box, 3 with
the grey box).



Description Architecture

dbu
φ Computes bottom-up features for disc. grid cells See Section E.1
dspatial
φ Computes features of propped objects in disc. attention FC([64, 64], RELU)†

dfuse
φ Combines top-down and bottom-up info in disc FC([100, 100], RELU)†

dwhere
φ Predicts params. for posterior dist. over z̄where FC([100, 100], RELU)†

dobj
φ Processes glimpse in disc. FC([256, 128], RELU)†

dwhat
φ Predicts params. for posterior dist. over z̄what FC([100, 100], RELU)†

ddepth
φ Predicts params. for posterior dist. over z̄depth FC([100, 100], RELU)†

dpres
φ Predicts params. for posterior dist. over z̄pres FC([100, 100], RELU)†

ptd
φ Computes object features in prop. attention FC([64, 64], RELU)
pspatial
φ Computes object-pair features in prop. attention FC([64, 64], RELU)
pglimpse
φ Predicts params for initial prop. glimpse FC([100, 100], RELU)
pbu
φ Processes initial prop. glimpse FC([256, 128], RELU)
pwhere
φ Predicts params. for posterior dist. over z̃where FC([100, 100], RELU)
pobj
φ Processes second glimpse in prop. FC([256, 128], RELU)
pwhat
φ Predicts params. for posterior dist. over z̃what FC([100, 100], RELU)
pdepth
φ Predicts params. for posterior dist. over z̃depth FC([100, 100], RELU)
ppres
φ Predicts params. for posterior dist. over z̃pres FC([100, 100], RELU)
prnn
φ Updates deterministic hidden state GRU(128)

robj
θ Predicts object appearances in rendering. FC([128, 256], RELU)

Table 2: Component neural networks in SILOT. FC([N, N], RELU) is a sequence of 3 fully-connected layers (2 hidden layers
each with N units, one output layer). The RELU non-linearity is applied only at the hidden layers, the output is left unconstrained.
†Recall that in Section 3.3 (Discovery) we said that we use convolutional networks in Discovery; however, since those networks
generally use a stride and filter size of 1, they are equivalent to applying a single fully-connected layer independently to each
spatial location. Thus, here we are listing the fully-connected equivalent of the convolutional networks that were actually used.
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Figure F2: Visualizing a forward pass of a trained SILOT network applied to a video from the Scattered Shapes task containing 15
objects. Top / Bottom: Ground truth / reconstructed frames with bounding boxes for detected objects overlaid. Middle: Predicted
appearances for detected objects. Box color represents object identity according to the network. Boxes for objects that SILOT
has discovered in a given frame are dashed, while boxes for objects propagated from the previous frame are solid. Notice that the
network is able to track objects even after they have been heavily occluded by other objects (e.g. green cross with the orange box
that starts near the center).
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Figure G3: Probing ability of the learned prior propagation
modules to predict object trajectories without access to the
input frames.

deactivated, and the prior propagation module is used instead
of the main propagation module. We can do this for both
SILOT and SQAIR.

Evaluation metrics were computed only on the final 5
frames. We are thus testing the ability of the prior propagation
module to predict the trajectories of the objects detected in
the first 3 frames by the main network. Results are shown in
Figure G3.
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