
Spatially Invariant, Label-free Object Tracking

Eric Crawford
Mila/McGill University
Montreal, QC, Canada

eric.crawford@mail.mcgill.ca

Joelle Pineau
Mila/McGill University
Montreal, QC, Canada

jpineau@cs.mcgill.ca

Abstract

The ability to detect and track objects in the visual world is a crucial skill for any
intelligent agent, as it is a necessary precursor to any object-level reasoning process.
Moreover, it is important that agents learn to track objects without supervision
(i.e. without access to annotated training videos) since this will allow agents to
begin operating in new environments with minimal human assistance. The task of
learning to discover and track objects in videos, which we call unsupervised object
tracking, has grown in prominence in recent years; however, most architectures that
address it still struggle to deal with large scenes containing many objects. In the
current work, we thus propose an architecture that scales well to the large-scene,
many-object setting by employing spatially invariant computations (convolutions
and spatial attention) and representations (a spatially local object specification
scheme). In a series of experiments, we demonstrate a number of attractive features
of our architecture; most notably, that it outperforms competing methods at tracking
objects in cluttered scenes with many objects, and that it can generalize well to
videos that are larger and/or contain more objects than videos seen in training.

In the current work, we address the problem of learning to track objects in cluttered scenes without
supervision; at training time, the algorithm has access to videos but no object annotations. Our
high-level approach is modeled after Sequential Attend Infer Repeat (SQAIR) [7]. SQAIR formulates
a Variational Autoencoder (VAE) [6] for videos, endowed with a highly structured, object-like latent
representation. This VAE is composed of a number of modules that are applied each timestep of
the input video; notably a discovery module which detects new objects in the current frame, and a
propagation module which updates the attributes of objects discovered in previous frames based on
information from the current frame. For each input frame, a generative rendering module creates a
corresponding output frame from the objects proposed by the discovery and propagation modules.
The network is trained by maximizing the VAE evidence lower bound, which encourages the output
frames to be accurate reconstructions of the input frames. At the end of training, it is expected that
the discovery module will have become a competent object detector, while the propagation module
will have learned object dynamics.

However, as we demonstrate empirically, SQAIR struggles at processing spatially large videos that
contain many densely packed objects. We hypothesize that this is because SQAIR does not fully
exploit the spatial statistics of objects in images. We propose Spatially Invariant Label-free Object
Tracking (SILOT) (pronounced like “silo”), a differentiable architecture for unsupervised object
tracking that is able to scale well to large scenes containing many objects. SILOT achieves this
scalability by making extensive use of spatially invariant computations and representations, thereby
fully exploiting the structure of objects in images. Through a number of experiments, we demonstrate
the concrete advantages that arise from this focus on spatial invariance. In particular, we show that
SILOT has a greatly improved capacity for handling large, many-object videos, and that trained
SILOT networks can generalize well to videos that are larger and/or contain different numbers of
objects than videos encountered in training.

Workshop on Perception as Generative Reasoning, NeurIPS 2019, Vancouver, Canada.



Figure 1: Top: Generative model assumed by SILOT.
Diamonds/circles are deterministic/stochastic func-
tions of their inputs. Bottom: Structure of the SILOT
neural network. Modules are indicated by color.

Overview. SILOT is a Variational Auotencoder
which models a video as a collection of moving ob-
jects. The model is divided into modules. The dis-
covery module detects objects from each frame,
the propagation module updates the attributes of
previously discovered objects, the selection mod-
ule selects a small set of objects to keep from the
union of the discovered and propagated objects,
and the generative rendering module renders se-
lected objects into an output frame. Discovery,
propagation and selection constitute the VAE infer-
ence network hφ(z|x), while the rendering makes
up the VAE generative model gθ(x|z).

Assume we are given an input video x of length
T , with x(t) denoting an individual frame for
t ∈ {0, . . . , T − 1} (we always surround tem-
poral indices with brackets). For each timestep,
we consider a number of variable sets: discovered
latents z̄(t), discovered objects ō(t), propagated
latents z̃(t), propagated objects õ(t), and selected
objects o(t). The total set of latent variables for the
VAE is: z =

⋃T−1
t=0 z̄(t) ∪ z̃(t). For both discovery

and propagation, the object sets are deterministic
functions of the corresponding latent variable sets (and possibly other variables). The generative
model assumed by SILOT and high-level structure of the SILOT neural network (both modeled after
SQAIR) are shown in Figure 1. Within a timestep t, the flow of computation runs as follows:

1. x(t) and objects from the previous frame o(t−1) are passed into the propagation module,
which predicts and applies a set of updates z̃(t), yielding propagated objects õ(t).

2. x(t) and õ(t) are passed into the discovery module, which discovers objects in the frame that
are not yet accounted for, first yielding z̄(t) and then ō(t) via a deterministic transformation.

3. The selection module selects a subset of objects to retain from õ(t) ∪ ō(t), yielding o(t).

4. o(t) is passed into the rendering module which yields an output frame x̂(t).

Object Representation. An object is represented by a set of variables, each called an attribute:

owhere ∈ R4 owhat ∈ RA odepth ∈ [0, 1] opres ∈ [0, 1]

owhere specifies the object’s size and location. owhat acts as a catch-all, storing information about the
object that is not captured by other attributes (e.g. appearance, velocity). odepth specifies the relative
depth of the object; in the output image, objects with higher values for this attribute appear on top of
objects with lower values. opres specifies the extent to which the object exists; objects with opres = 0
do not appear in the output image.

Discovery. Object discovery in SILOT is implemented as a convolutional neural network in order to
achieve spatial invariance, and is heavily inspired by SPAIR, an unsupervised convolutional object
detector [2], as well as single-shot supervised object detectors such as YOLO [12] and SSD [9]. An
initial convolutional network dbu

φ extracts “bottom-up” information from the current input frame x(t),
mapping to a feature volume: vbu

(t) = dbu
φ (x(t)).

The structure of network dbu
φ can be taken to induce a spatial grid over the frame, as follows. Let

ch/cw be the translation (in pixels) vertically/horizontally between receptive fields of adjacent spatial
locations in vbu

(t). Then for an input frame with dimensions (Hinp,Winp, 3), we divide the frame up
into an (H,W ) grid of cells, each cell being ch pixels high by cw pixels wide, where H = dHinp/che,
W = dWinp/cwe. The output volume vbu

(t) has spatial shape (H,W ), and we associate each of its
spatial locations with the corresponding grid cell. Importantly, the input frame is padded on all sides
to ensure that the receptive field for each spatial location in vbu

t is centered on its grid cell.

2



Figure 2: Schematic depicting the structure of a dis-
covery unit with indices ij at time t, discovering the
black bird which has just come into view from the
right. Local bottom-up information from the current
frame is processed by a convolutional filter (trape-
zoid), which has a receptive field (grey base of the
trapezoid) centered on the discovery unit’s grid cell
(green rectangle). Next, top-down information about
nearby objects propagated from the previous frame (or-
ange boxes) is summarized using spatial attention with
a Gaussian kernel centered at the grid cell. Bottom-
up and top-down information is then fused and used
to autoregressively predict object attributes (here we
have omitted the latent discovery variables z̄ij). ōwhere

ij

is specified with respect to the grid cell, and the pre-
diction for ōwhat

ij conditions on the output of a glimpse
parameterized by ōwhere

ij (blue rectangle).

The discovery module will ultimately yield a sep-
arate object for each grid cell. It is useful to think
of the discovery module as consisting of a 2D ar-
ray of identical object detectors, each operating
on a different local region of the image. We call
each of these local detectors a discovery unit; the
structure of a unit is shown in Figure 2. Vari-
ables for all discovery units are grouped together
into convolutional volumes with spatial dimen-
sions (H,W ), and computations are implemented
by size-preserving convolutions on these volumes,
essentially computing all units in parallel.

In order to avoid rediscovering objects that are al-
ready accounted for, discovery needs to be aware
of “top-down” information about objects propa-
gated from the previous frame. Note that each
discovery unit need only worry about propagated
objects that are near its grid cell. We thus em-
ploy a spatial attention step which, for each grid
cell, weights the propagated objects according
to a Gaussian kernel centered at the cell (simi-
lar to [1]). The result is a feature volume vtd

(t)

with spatial shape (H,W ) where each spatial lo-
cation contains information about nearby objects:
vtd
(t) = SpatialAttentiondisc

φ (õ(t), σ) where σ is the
standard deviation of the Gaussian kernel.

Finally, the network predicts parameters for dis-
tributions over the latent discovery variables z̄(t),
samples from these distributions, and maps the sampled latents to the more interpretable ō(t). This
is done on an attribute-by-attribute basis (in order [where, what, depth, pres]), and is autoregressive
(predictions for later attributes condition on samples for earlier ones). A glimpse is extracted from
x(t) at location ōwhere

(t) in order to include location-specific information.

Propagation. The propagation module at time t takes in the current frame x(t) and the objects from
the previous timestep o(t−1), and propagates the objects forward in time, using information from
the current frame to update the object attributes. This yields propagated objects õ(t). We begin by
computing a feature vector for each object in o(t−1). In order to handle interactions between objects,
we can have the feature vector for an object depend on other objects as well. Here we make the
assumption that object interactions are spatially local (which is enough to handle collisions, for
example). Thus we compute features using a spatial attention step similar to the one used in the
Discovery module, allowing the features for an object to depend on attributes of nearby objects:
utd
(t) = SpatialAttentionprop

φ (o(t−1), σ). From here we autoregressively predict new values for the
object attributes; this is again similar to attribute prediction in the discovery module, except that
rather than directly predicting attribute values, we predict attribute updates and subsequently apply
them. For brevity, we leave the full details of this process to the supplementary material.

Propagation in SILOT is similar to propagation in SQAIR. However, there is one significant difference.
In SQAIR, objects within a timestep are updated sequentially; this allows objects within a timestep to
condition on one another, facilitating coordination between objects and supporting behavior such as
explaining away. However, this sequential processing can be computationally demanding when there
are large numbers of objects. In contrast, SILOT updates all objects within a timestep in parallel; a
degree of coordination between (nearby) objects is achieved via the spatial attention step.

Selection. After running propagation and discovery for a given timestep, we are left with K +HW
objects, where K is the number of objects in the previous frame. The role of the selection module is
to reduce this back to K objects; otherwise the number of propagated objects would grow with the
number of timesteps, and training would become computationally intractable. We employ a simple
top-K selection strategy, picking the K objects with largest values for the pres attribute. While this

3



hard selection is not differentiable, we found it not to cause problems as long as K is large enough
(we chose K to be roughly 25% larger than the maximum number of objects in a single frame).

Figure 3: Probing object tracking performance as
number of objects per video varies in the Scattered
MNIST (top) and Scattered Shapes (bottom) tasks. All
points are averages over 6 random seeds for MNIST,
4 for Shapes. Filled regions are standard deviations.

Rendering. The rendering module is the sole con-
stituent of the VAE generator, taking in the current
set of objects o(t) and yielding a frame x̂(t). The
rendering process is highly structured, and this
structure gives meaning to the object attributes;
for example, the object is placed at location owhere

via spatial transformers, and odepth parameterizes
a differentiable approximation of relative depth.
Details are left to the supplementary material.

Training. The network is trained by maximizing
the evidence lower bound [6]:

Ex∼h(x),z∼hφ(z|x)

[
log

(
gθ(x|z)g(z)

hφ(z|x)

)]
with respect to φ and θ. Here h(x) is the distribu-
tion over videos defined by the dataset, and g(z) is
the prior distribution over z. The optimization is
performed by gradient ascent. For the majority of
latents, we assume independent Normal prior dis-
tributions. However, for the pres variables (which
can be thought of as BinConcretes [10]) we em-
ploy a prior which encourages the network to use
few objects in reconstructing a scene (similar to that used in SPAIR [2]), improving the quality of the
discovered objects. To increase stability in training, we first train on only the first 2 frames of each
video, and gradually grow to include the full videos (a form of curriculum learning). We also employ
a technique that we call discovery dropout wherein we turn off the entire discovery module with
probability 0.5 for t 6= 0, which encourages the network to favor using propagation over discovery.

Experiments. We tested SILOT on several challenging object discovery and tracking tasks, empha-
sizing videos containing large numbers of objects. We used 2 metrics to assess model performance:
MOTA and AP, standard measures of object tracking and detection, respectively[11, 3] (higher is
better for both). We compare against a baseline algorithm ConnComp, whose performance can be
interpreted as a measure of the difficulty of the dataset; it will be successful only to the extent that
objects can be tracked by color alone. Results are shown in Figure 3, and videos visualizing SILOT’s
performance can be found online at https://sites.google.com/view/silot. Code is available
at https://github.com/e2crawfo/silot. A similar model was concurrently developed in [5].

MOTA AP
Space Invaders .89 .73

Asteroids .67 .67

Table 1: SILOT performance on Atari.

The first task consists of videos with a random number of
moving MNIST digits. We used two training conditions:
train on videos containing 1–6 digits vs 1–12 digits. All
networks were tested on videos containing up to 12 digits;
thus, networks trained in the 1–6 condition were required to
generalize beyond their training experience. Here we also evaluated SQAIR trained with two different
backbone networks. Results for SQAIR trained on 1–12 digits are not shown, as SQAIR’s simpler
discovery module was unable to process the dense scenes; the resulting highly varied performance
would make the plots unreadable. Notice that SILOT trained on 1–6 digits takes only a minor
performance hit compared to SILOT trained on 1–12 digits.

The second task consists of videos containing randomly moving colored shapes. Here we perform a
similar manipulation as for MNIST: train on 1–10 shapes vs 21–30 shapes, test on up to 35 shapes.
We also performed an additional manipulation: training on random 60× 60 crops of the full video,
vs training on full 96× 96 videos. At test time full videos are always used. This manipulation tests
SILOT’s ability to generalize to larger videos than encountered in training. Notice that SILOT trained
on random 60× 60 crops of videos containing only 1–10 shapes achieves reasonable performance
when applied to full videos containing up to 35 shapes.

Finally, in order to push the scalability of SILOT, we tested it on videos from SpaceInvaders and
Asteroids Atari games (with spatial dimensions at least 190× 160), results shown in Table 1.

4

https://sites.google.com/view/silot
https://github.com/e2crawfo/silot


References
[1] Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional object-

based approach to learning physical dynamics. arXiv preprint arXiv:1612.00341, 2016.

[2] Eric Crawford and Joelle Pineau. Spatially invariant, unsupervised object detection with convolutional
neural networks. In Thirty-Third AAAI Conference on Artificial Intelligence, 2019.

[3] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):303–338,
2010.

[4] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. In Advances in
neural information processing systems, pages 2017–2025, 2015.

[5] Jindong Jiang, Sepehr Janghorbani, Gerard de Melo, and Sungjin Ahn. Scalable object-oriented sequential
generative models. arXiv preprint arXiv:1910.02384, 2019.

[6] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[7] Adam Kosiorek, Hyunjik Kim, Yee Whye Teh, and Ingmar Posner. Sequential attend, infer, repeat:
Generative modelling of moving objects. In Advances in Neural Information Processing Systems, pages
8606–8616, 2018.

[8] Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics quarterly,
2(1-2):83–97, 1955.

[9] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In European conference on computer vision, pages
21–37. Springer, 2016.

[10] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of
discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

[11] Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad Schindler. Mot16: A benchmark for
multi-object tracking. arXiv preprint arXiv:1603.00831, 2016.

[12] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. arXiv preprint, 2017.

[13] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. In Advances in neural information processing systems, pages 91–99, 2015.

5



A Module Details

Discovery

Figure 4: Schematic depicting grid cells and padding
in the discovery module. The gray grid is the grid
of cells described in the main text. The top of the
trapezoid is a spatial location in the output layer of
dbu
φ . This output location is associated with the grid

cell highlighted in green. The bottom of the trapezoid
is the receptive field of that spatial location; the frame
is padded (solid gray border area) before being passed
into dbu

φ to ensure that all receptive fields are centered
on their corresponding grid cells.

Details on the grid structure of the Discovery mod-
ule were presented in the main text. Here we pro-
vide on additional figure, Figure 4, giving some
visual intution about grid cells and padding in the
discovery module.

Here we also provide details on the workings of
the discovery module after vbu

(t) and vtd
(t) have been

predicted, which were largely glossed over in the
main text. A convolutional network fuses bottom-
up and top-down information (here we begin omit-
ting temporal indices):

v = dfuse
φ (vbu, vtd)

We follow the convention that a convolutional net-
work that takes multiple inputs first depth-wise
concatenates those inputs into a single volume,
which is then fed into the network. The network
then predicts parameters for distributions over the
latent discovery variables z̄(t), samples from the
predicted distributions, and then maps the sampled
latent to the more interpretable ō(t). This is done on an attribute-by-attribute basis (in order [where,
what, depth, pres]), and is autoregressive, so that predictions for later attributes are conditioned on
samples for earlier attributes.

Predicting ōwhere. We first use a network dwhere
φ to predict parameters for a distribution over z̄where,

and then sample:

µ̄where, σ̄where = dwhere
φ (v)

z̄where ∼ N(µ̄where, σ̄where)

Next we deterministically map to ōwhere. We decompose z̄where as z̄where = (z̄y, z̄x, z̄h, z̄w). Here it
will be useful to narrow our focus to a single discovery unit with indices ij for i ∈ {0, . . . ,H − 1},
j ∈ {0, . . . ,W − 1}. z̄yij and z̄xij parameterize the position of the object according to:

byij = bmin + sigmoid(z̄yij)
(
bmax − bmin)

ōyij = (i+ byij)ch

bxij = bmin + sigmoid(z̄xij)
(
bmax − bmin)

ōxij = (j + bxij)cw

where bmin and bmax are fixed real numbers which, in effect, impose bounds on the distance between
the object and the grid cell. z̄hij and z̄wij parameterize the size of the object as:

ōhij = sigmoid(z̄hij)ah ōwij = sigmoid(z̄wij)aw

for fixed real numbers ah and aw. (ah, aw) can be interpreted as the dimensions of an anchor box
as used in supervised object detection [13]. Specifying object size with respect to ah and aw, as
opposed to the the size of the input frame, ensures that ōhij and ōwij are meaningful regardless of the
spatial dimensions of the input frame.

Predicting ōwhat, ōdepth and ōpres. In order to obtain highly location-specific information from the
image, an array of glimpses g (one per discovery unit) is extracted from the image using spatial
transformers [4] parameterized by ōwhere

(t) . These are then mapped to a feature volume vobj by a

network dobj
φ :

g = τ(x, ōwhere)

vobj = dobj
φ (g)

6



Figure 5: Schematic depicting the propagation module updating an object with index k, tracking the location
of the white bird. A feature vector for the object, which also takes into account nearby objects, is first created
using spatial attention. Next, an initial glimpse (grey region) is specified with respect to the object’s location
from the previous time step (green box). This glimpse is then processed by a neural network (trapezoid) and
used to predict and apply an update to the where attribute, resulting in õwhere

k . The blue box corresponds to the
location of the image referred to by õwhere

k . Another glimpse is extracted at location õwhere
k , and updates to the

remaining attributes are predicted and applied autoregressively. Here we have omitted the latent propagation
variables z̃(t).

We then autoregressively predict the remaining attributes:

µ̄what, σ̄what = dwhat
φ (v, vobj, ōwhere)

z̄what ∼ N(µ̄what, σ̄what)

ōwhat = z̄what

µ̄depth, σ̄depth = ddepth
φ (v, vobj, ōwhere, ōwhat)

z̄depth ∼ N(µ̄depth, σ̄depth)

ōdepth = sigmoid(z̄depth)

µ̄pres = dpres
φ (v, vobj, ōwhere, ōwhat, ōdepth)

z̄pres ∼ Logistic(µ̄pres)

ōpres = sigmoid(z̄pres)

Propagation

Propagation at time t takes in the current frame x(t) and the K objects from the previous timestep
o(t−1), and propagates the objects forward in time, using information from the current frame to update
the object attributes. For propagation we assume an additional object attribute ohidden

(t) , which stores
the hidden state of a recurrent neural network prnn

φ and is fully deterministic. After each propagation
step, the hidden state for each object is updated independently by running the recurrent network
network, taking the new object attributes as input. We can think of this as providing the propagation
module with a deterministic path from an object’s past to the present. Newly discovered objects are
given a default initial hidden state. The value of the default hidden state is a trainable parameter.

In this section, all variables are matrices withK as their leading dimension, whereK is the number of
propagated/selected objects. All networks are applied to each row independently (i.e. “object-wise”)
and in parallel. This is similar to the convention used in the discovery module, but with one less
leading dimension. The structure of propagation for a single object is shown in Figure 5.

As discussed in the main text, the first step is to compute features about the previous objects o(t−1)
using a spatial attention step:

utd
(t) = SpatialAttentionprop

φ (o(t−1), σ)

7



Next we need to condition attribute updates on the current frame. Rather than condition on the
entire frame, we instead extract a glimpse in a region around the object’s location from the previous
timestep:

uwhere
(t) = owhere

(t−1) + tanh(pglimpse
φ (u(t)))

gprop
(t) = τ(x(t), u

where
(t) )

ubu
(t) = pbu

φ (gprop
(t) )

We predict and apply an update to the where attribute:

˜̃µwhere
(t) , σ̃where

(t) = pwhere
φ (u(t), u

obj
(t))

z̃where
(t) ∼ N(µ̃where

(t) , µ̃where
(t) )

õwhere
(t) = owhere

(t−1) + tanh(z̃where
(t) )

Next we extract and process another glimpse at õwhere
(t) :

gprop
(t) = τ(x(t), õ

where
(t) )

uobj
(t) = pobj

φ (gprop
(t) )

We then autoregressively predict changes to the remaining attributes and apply them:

µ̃what, σ̃what = pwhat
φ (u, uobj, õwhere)

z̃what ∼ N(µ̃what, σ̃what)

õwhat = owhat
(t−1) + tanh(z̃what)

µ̃depth, σ̃depth = pdepth
φ (u, uobj, õwhere, õwhat)

z̃depth ∼ N(µ̃depth, σ̃depth)

õdepth = odepth
(t−1) + tanh(z̃depth)

µ̃pres = ppres
φ (u, uobj, õwhere, õwhat, õdepth)

z̃pres ∼ Logistic(µ̃pres)

õpres = opres
(t−1) · sigmoid(z̃pres)

Notice that propagation cannot increase the value of the pres attribute, due to the form of the update
(multiplication by a sigmoid). This ensures that objects are only ever discovered by the Discovery
module, which is better equipped for it.

Finally, the hidden state is updated by the RNN:

õhidden = prnn
φ (ohidden

(t−1), õ
where, õwhat, õdepth, õpres)

Rendering

The rendering module is the sole constituent of the VAE decoder. It takes in the current set of objects
o(t) and renders them into a frame. We start by focusing on a single object with index k. First, an
appearance map and a partial transparancy map are are predicted:

βk, ξk = sigmoid(robj
θ (owhat

k ))

These maps have dimensions (Hobj,Wobj, 3) and (Hobj,Wobj, 1), respectively, for integers Hobj, Wobj.

ξk is multiplied by opres
k to ensure that objects are only rendered to the image to the extent that they

are present, yielding a final transparency map:

αk = ξk · opres
k

Next we combine αk with odepth
k to get an importance map:

γk = αk · odepth
k

8



For each object, an inverse spatial transformer parameterized by owhere
k is then used to create image-

sized versions of these three maps, with the input maps placed in the correct location:

α′k, β
′
k, γ
′
k = τ−1([αk, βk, γk], owhere

k )

For each location in the output of one of these image-sized maps, the value is obtained from a
corresponding location in the input space, dictated by the location parameters owhere

k . However,
some of these locations will lie “outside” of the input map, and for these we use a default value. In
particular, we use a default of 0 for α and β, and −∞ for γ. These computations can be performed
for all objects in parallel.

To obtain the output frame, the image-sized appearance maps are combined by weighted summation.
For each pixel we take the softmax (over objects) of the importance values, and weight each object
by the resulting value. We also weight by α′ to implement transparency. Thus we have:

x̂(t) =

∑K−1
k=0 β′kα

′
ke
γ′
k∑K−1

`=0 eγ
′
`

When a given pixel is within the bounding boxes of two or more objects, the softmax implements
a differentiable approximation of relative depth, and objects with larger values for odepth (and thus
larger values for γ, all else being equal) are rendered on top of objects with lower values. The default
of −∞ used when spatially transforming γ ensures that objects do not contribute to the softmax for
pixels that are not within their bounding box.

For large frames this scheme can be expensive in terms of both memory and computation. Thus in
practice we use an equivalent (but more complex) implementation that avoids explicitly constructing
image-sized maps for each object.

B Spatial Attention

In this section we provide details on the spatial attention steps used in the discovery and propagation
modules. Both are similar to Neural Physics Engine [1], though more so for the Propagation version.

Spatial Attention for Discovery

Recall that in the discovery module, spatial attention is used to obtain, for each discovery unit, a
feature vector summarizing nearby propagated objects. The main motivation is to allow the discovery
module to avoid rediscovering objects that are already accounted for:

vtd
(t) = SpatialAttentiondisc

φ (õ(t), σ)

We first narrow our focus to a single discovery unit with indices ij. For every propagated object
õk (dropping temporal indices here), we first use an MLP dspatial

φ to compute a feature vector that is
specific to ij. As input to this MLP, we supply the object õk, except that we replace the position
attributes õyk, õxk with relative position attributes õy

′

ij,k and õx
′

ij,k. Here we are assuming that what is
important is the position of the propagated objects relative to the grid cell, rather than their absolute
positions. Noting that the center of grid cell ij has location ((i+ 0.5) · ch, (j + 0.5) · cw) we have

õy
′

ij,k = õyk − (i+ 0.5) · ch õx
′

ij,k = õxk − (j + 0.5) · cw

The spatial attention module then just sums these feature vectors over propagated objects k, weighted
by a Gaussian kernel:

vtd
ij =

K−1∑
k=0

G(õy
′

ij,k, õ
x′

ij,k, σ) · dspatial
φ (õ

\yx
k , õy

′

ij,k, õ
x′

ij,k)

where G is the density of a 2 dimensional Gaussian, and õ\yxk contains all attributes of õk except y
and x. Note that this can be computed for all ij and k in parallel.

9



Spatial Attention for Propagation

In the propagation module, spatial attention is used to compute a feature vector for each object from
the previous step, which is subsequently used to predict updates to the attributes of the object.

utd
(t) = SpatialAttentionprop

φ (o(t−1), σ)

This vector is supposed to take into account attributes of the object itself, as well as attributes of
nearby objects. This should allow the updates to take into account the effect of nearby objects on the
target object.

We first narrow our focus to a target object with index `. We use an MLP ptd
φ to compute an initial

feature vector:

utd′
` = ptd

φ(o`)

Then for every object k we compute the position of object k relative to object `:

oy
′

`,k = oyk − o
y
` ox

′

`,k = oxk − ox`

Next we use an MLP pspatial
φ to get feature vectors for ok in the context of target object o`. This is

similar to discovery, except the MLP also takes utd′
` as an argument. The results are summed and

weighted by a Gaussian kernel, and then utd′
` is added in:

utd
` = utd′

` +

K−1∑
k=0

G(oy
′

`,k, o
x′

`,k, σ) · pspatial
φ (o

\yx
k , oy

′

`,k, o
x′

`,k, u
td′
` )

We can think of the second term as computing the additive effect of nearby objects on the target
object. Again this can be computed for all ` and k in parallel.

C Baseline Algorithm: ConnComp

We compare against a simple baseline algorithm called ConnComp (Connected Components), which
works as follows. For each frame a graph is created wherein the pixels are nodes, and two pixels
are connected by an edge if and only if they are adjacent and have the same color. We then extract
connected components from this graph, and call each connected component an object. This yields a
set of objects for each frame. In order to track objects over time (i.e. to assign persistent identifiers to
the objects), we employ the Hungarian algorithm to find matches between detected objects in each
pair of successive frames [8]. As matching cost we use the distance between object centroids, and
require that matching objects have the same color (objects pairs with mismatched colors are assigned
a cost of∞). The performance of ConnComp can be interpreted as a measure of the difficulty of the
dataset; it will be successful only to the extent that objects can be tracked by color alone.

D Experiment Visualizations

Visualization of object tracking in trained SILOT networks are shown for the Scattered MNIST Figure
6 and the Scattered Shapes task in 7.

10



in
p
u
t

o
b
je
ct
s

re
co
n
st
ru
ct
io
n

Figure 6: Visualizing a forward pass of a trained SILOT network applied to a video from the Scattered MNIST
task containing 8 objects. Top / Bottom: Ground truth / reconstructed frames with bounding boxes for detected
objects overlaid. Middle: Predicted appearances for detected objects. Box color represents object identity
according to the network. Boxes for objects that SILOT has discovered in a given frame are dashed, while boxes
for objects propagated from the previous frame are solid. Notice that the network is able to track objects even
after they have passed completely through other objects (e.g. 5 with the green box, 3 with the grey box).

in
pu

t
ob

je
ct

s
re

co
ns

tru
ct

io
n

Figure 7: Visualizing a forward pass of a trained SILOT network applied to a video from the Scattered Shapes
task containing 15 objects. Top / Bottom: Ground truth / reconstructed frames with bounding boxes for detected
objects overlaid. Middle: Predicted appearances for detected objects. Box color represents object identity
according to the network. Boxes for objects that SILOT has discovered in a given frame are dashed, while boxes
for objects propagated from the previous frame are solid. Notice that the network is able to track objects even
after they have been heavily occluded by other objects (e.g. green cross with the orange box that starts near the
center).

11


	Module Details
	Discovery
	Propagation
	Rendering

	Spatial Attention
	Spatial Attention for Discovery
	Spatial Attention for Propagation

	Baseline Algorithm: ConnComp
	Experiment Visualizations

