
Supplementary Material for
“Spatially Invariant Unsupervised Object Detection with Convolutional Neural

Networks”

A Prior on zpres
Here we provide a derivation for the prior on zpres (a vector of
length HW made up of all zijpres), discussed briefly in Section
4.2. Let C be a random variable giving the number of non-
zero entries in zpres. Under the prior, zpres is generated by first
sampling C, and then drawing zpres uniformly from all binary
vectors that have C non-zero entries:

p(zpres) = p(C = nz(zpres))p(zpres|C = nz(zpres))

where nz(·) gives the number of non-zero entries in a vector.
There are

(
HW
C

)
binary vectors of length HW with C non-

zero entries, so:

p(zpres|C = nz(zpres)) =

(
HW

nz(zpres)

)−1
For the distribution over C we use a Geometric distribution
with parameter s. We use the Geometric interpretation that
puts C as the number of failures before a success, and s
as the success probability. By setting s to a high value, we
put most of the probability mass at low values of C, thereby
putting pressure on the network to explain images using as
few objects as possible.

p(C = nz(zpres)) = s(1− s)nz(zpres)

We then truncate and normalize to ensure C has support
{0, 1, . . . ,HW}:

p(C = nz(zpres)) =
s(1− s)nz(zpres)∑HW
c=0 s(1− s)c

=
s(1− s)nz(zpres)

s (1−(1−s)
HW+1)

1−(1−s)

=
s(1− s)nz(zpres)

1− (1− s)HW+1

Overall, the prior is:

p(zpres) =
s(1− s)nz(zpres)

(1− (1− s)HW+1)
(

HW
nz(zpres)

)
B KL Divergence for zpres

Having derived the prior, we now turn to efficient computa-
tion of the KL divergence between the distribution over zpres

yielded by the network, namely qφ(zpres|x) (embodied in the
βijpres variables from Section 4.3) and p(zpres). Efficient com-
putation of this KL divergence is necessary for computing
the second term of the VAE training objective (Equation 3).
For convenience, we switch to indexing the entries of zpres
using a single index k rather than the grid indices ij. We will
use the notation zm:n

pres to mean the sub-vector ranging from
index m to n, inclusive.

First, from basic properties of KL divergence we have:

DKL(q(zpres|x) ‖ p(zpres)) =
n∑
k=1

E
[
DKL(q(z

k
pres|z1:k−1pres , x) ‖ p(zkpres|z1:k−1pres))

]
where the expectation for index k is taken over variables
z1:k−1pres sampled from the marginal q(z1:k−1pres |x). We estimate
each expectation using a single sample:

≈
n∑
k=1

DKL(q(z
k
pres|ẑ1:k−1pres , x) ‖ p(zkpres|ẑ1:k−1pres))

where ẑ indicates values that have been sampled. Note that
q(zkpres|ẑ1:k−1pres , x) is just Bernoulli(βkpres) from Section 4.3.

We now turn to computation of p(zkpres|ẑ1:k−1pres). Recalling
that C is a random variable giving the number of non-zero
entries in zpres, we have:

p(zkpres|ẑ1:k−1pres) =

HW∑
c=0

p(zkpres|ẑ1:k−1pres , C = c)p(C = c|ẑ1:k−1pres)

(B1)

We focus first on the factor p(zkpres|ẑ1:k−1pres , C = c). Given
that we have sampled ẑ1:k−1pres , we still need c − nz(ẑ1:k−1pres)
non-zeros, and we have HW − (k − 1) “slots” to get them
with. Recalling that given C = c, we are assuming uniform
sampling over all binary vectors with c non-zeros, we have:

p(zkpres|ẑ1:k−1pres , C = c) =
c− nz(ẑ1:k−1pres)

HW − (k − 1)

The final piece that we need is p(C = c|ẑ1:k−1pres). This can be
decomposed recursively as:

p(C = c|ẑ1:k−1pres) ∝ p(ẑk−1pres |C = c, ẑ1:k−2pres)p(C = c|ẑ1:k−2pres)

(B2)

Starting from k = 1, we first evaluate Equation (B1), then
sample zk from qφ(z

k
pres|ẑ1:k−1pres), and finally update the con-

ditional count distribution p(C = c|ẑ1:kpres) via Equation (B2).

C Object Rendering in the Decoder Network
Here we describe in detail the differentiable rendering algo-
rithm implemented in the decoder network. For each object
we have the following values:
1. Object RGB map oij with shape (Hobj ,Wobj , 3)

2. Object transparency map αij with shape (Hobj ,Wobj , 1)

3. Object bounding box bij derived from zijwhere
(see Section 4.1 and Figure 1).

4. Relative depth value zijdepth

5. Presence value zijpres

We also have a background image xbg with shape
(Himg,Wimg, 3), which may have been predicted from the
input image by a neural network, or may be a fixed image
calculated from the dataset in some other way.

We first perform two initial computations for each object:

α̃ij = αijzijpres

γij = αijzijpresσ(−z
ij
depth)

where σ is the sigmoid function. α̃ij is a transparency map
that takes into account whether the object exists, γij is an
importance map which is used to implement a differentiable
approximation of relative depth.

For each pixel in the output image, we iterate over all ob-
jects, checking whether each object affects the current pixel
(i.e. whether the pixel is inside the bounding box for the
object). For all objects that affect the pixel, three values are
extracted from the object: RGB values o′, a transparency
value α′ and an importance value γ′. These values are ex-
tracted by finding the position of the pixel with respect to
the object’s coordinate frame, and then using bilinear inter-
polation to extract a value from the relevant map. The RGB
value o′ is then mixed with the background using α′. The
mixed values from all affecting objects are then mixed with
one another using a convex combination consisting of the γ′
values normalized to sum to 1 (within the pixel). This mixing
step implements the differentiable approximation of relative
depth; objects with higher importance values (lower depth)
get a larger “share” of the pixels that they affect, and ap-
pear on top of objects with lower importance (higher depth).
Pseudo-code for this process is given in Algorithm 1.

Algorithm 1 Differentiable rendering algorithm

1: function CONTAINS(b, (y, x))
Return True iff pixel (y, x) is inside bounding box b

2: end function

3: function INTERPOLATE(b, v, (y, x))
Assuming pixel (y, x) is inside bounding box b, extract
a value from map v for pixel (y, x) using bilinear inter-
polation.

4: end function

5: function DIFFERENTIABLERENDERING
6: xout← COPY(xbg)
7: for pixel with position (y, x) do
8: n-writes← 0
9: weighted-sum← 0

10: normalizer← 0
11: for object with index (i, j) do
12: if CONTAINS(bij , (y, x)) then
13: α′ ← INTERPOLATE(bij , α̃ij , (y, x))
14: γ′← INTERPOLATE(bij , γij , (y, x))
15: o′ ← INTERPOLATE(bij , oij , (y, x))
16: o′ ← α′o′ + (1− α′)xbg[y, x]
17: n-writes← n-writes+1
18: weighted-sum← weighted-sum + γ′o′
19: normalizer← normalizer + γ′
20: end if
21: end for
22: if n-writes > 0 then
23: xout[y, x]← weighted-sum

normalizer
24: end if
25: end for
26: return xout
27: end function

D Model Details

D.1 AIR / DAIR

For our implementation of AIR/DAIR, we
adapted code from github.com/aakhundov/
tf-attend-infer-repeat. For backpropagat-
ing through discrete latent variables, we make use of the
Concrete trick rather than the REINFORCE-style gradient
estimator used in the original paper (the same is also done for
SPAIR). For the majority of AIR’s parameters the defaults
were used, and these are expected not to have a significant
impact on performance. As stated previously, AIR and DAIR
were always provided with the true number of objects in
the image (imparted to the network by hard-coding the
number of recurrent steps), even at test time, which allowed
us to avoid setting AIR hyperparameters that control the
prior distribution over number of objects (i.e. parameters
analogous to the s hyperparameter from SPAIR). For all
datasets on which AIR was used, we performed random
hyperparameter searches over AIR-analogs of µy/x, σh/w,
and σy/x.

github.com/aakhundov/tf-attend-infer-repeat
github.com/aakhundov/tf-attend-infer-repeat

Description Variable Value
Base bbox size (ah, aw) (48, 48)
Batch size 32
Bbox location bounds (bminy/x , b

max
y/x) (-0.5, 1.5)

Cell size (ch, cw) (12, 12)
Dim. of zijwhat A 50
Rendered object size (Hobj ,Wobj) (14, 14)
Learning rate 0.0001
Max gradient norm 1.0
Optimizer Adam
Prior on zh, zw (µh/w, σh/w) (-2.2, 0.5)
Prior on zy, zx (µy/x, σy/x) (0, 1)
Prior on zdepth (µdepth, σdepth) (0, 1)
Prior on zwhat (µwhat, σwhat) (0, 1)
Prior on zpres s See Sec D.2

Table 1: Base hyperparameter values for SPAIR.

D.2 SPAIR
The base set of hyperparameters for SPAIR is given in Table
D.2. To facilitate stability early on in training, we use a
schedule, rather than a fixed value, for s (which controls
the prior over zpres). Early in training we use a value near 0,
which does not penalize the network for using many objects.
Over the first few thousand updates, we anneal this to a
value of ≈0.99, which encourage network to use few objects.
Without an initial period where the network is not penalized
for using many objects, we found the network would become
stuck in local minima where all objects are turned off. This
is likely because early in training the network is not good
at reconstructing objects, and can get a lower reconstruction
loss by simply turning all objects off (i.e. setting all zijpres = 0).
This trick was adapted from a similar trick used for AIR in
the cited repository.

For the convolutional encoder network, we used 2 lay-
ers with (stride=2, kernel-size=4), followed by a layer with
(stride=3, kernel-size=4), followed by 3 layers with (stride=1,
kernel-size=1). All convolutional layers used 128 filters, ex-
cept the final layer which used 100. Additionally, for the first
3 convolutional layers, we employed a padding style which
always pads on the right/bottom side of the volume. The helps
to ensure a consistent relationship between the receptive field
of neurons in the final layer of the convolutional network and
the location of the corresponding cells in the input image,
which is necessary for outputting accurate object locations
for differently sized images.

D.3 ConnComp
See Section 5.1 of the main paper for a description of the
ConnComp algorithm. One required step is finding the con-
nected components of a binary image; this was performed
using the function tf.contrib.image.connected_
components from tensorflow 1.8. ConnComp has a single
parameter τ . A pixel is considered non-background if and
only if the absolute difference between the pixel color and
the background color is at least τ . τ was set by doing a grid

search, using the value that yielded the best performance on
the training set.

tf.contrib.image.connected_components
tf.contrib.image.connected_components

	Prior on z_pres
	KL Divergence for z_pres
	Object Rendering in the Decoder Network
	Model Details
	AIR / DAIR
	SPAIR
	ConnComp

