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Abstract

Associative memories have been an active area of research over the last forty years (Willshaw
et al., 1969; Kohonen, 1972; Hopfield, 1982) because they form a central component of many
cognitive architectures (Pollack, 1988; Anderson & Lebiere, 1998). We focus specifically on
associative memories that store associations between arbitrary pairs of neural states. When
a noisy version of an input state vector is presented to the network, it must output a “clean”
version of the associated state vector. We describe a method for building large-scale networks for
online learning of associations using spiking neurons, which works by exploiting the techniques
of the Neural Engineering Framework (Eliasmith & Anderson, 2003). This framework has
previously been used by Stewart et al. (2011) to create memories that possess a number of
desirable properties including high accuracy, a fast, feedforward recall process, and efficient
scaling, requiring a number of neurons linear in the number of stored associations. These
memories have played a central role in several recent neural cognitive models including Spaun,
the world’s largest functional brain model (Eliasmith et al., 2012), as well as a proposal for
human-scale, biologically plausible knowledge representation (Crawford et al., 2013). However,
these memories are constructed using an offline optimization method that is not biologically
plausible. Here we demonstrate how a similar set of connection weights can be arrived at through
a biologically plausible, online learning process featuring a novel synaptic learning rule inspired in
part by the well-known Oja learning rule (Oja, 1989). We present the details of our method and
report the results of simulations exploring the storage capacity of these networks. We show that
our technique scales up to large numbers of associations, and that recall performance degrades
gracefully as the theoretical capacity is exceeded. This work has been implemented in the
Nengo simulation package (http://nengo.ca), which will allow straightforward implementations
of spiking neural networks on neuromorphic hardware. The result of our work is a fast, adaptive,
scalable associative memory composed of spiking neurons which we expect to be a valuable
addition to large systems peforming online neural computation.

Our network consists of three layers of spiking neurons. The first layer encodes the current
input, and the third layer encodes the current output. Associations are learned by changing the
efferent and afferent connection weights of the middle layer using biologically plausible learning
rules.

1 Input Learning Rule

Given a learning rate η, an input vector x encoded by the activity of the input layer, the filtered
activity a(t) of neurons in the middle layer, and the matrix e whose rows are the “preferred
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direction” vectors of the middle layer neurons, we modify the preferred direction vectors of the
middle layer neurons according to the equation:

∆e = η(a(t)xT − a(t)e) = ηa(t)(

x
T

...
xT

− e) (1)

Setting ∆ei = 0 gives ai(t)x = ai(t)ei, and thus for a particular x, stability is characterized by

[∆ei = 0] ⇐⇒ [ai(t) > 0 =⇒ ei = x] (2)

Thus the effect of this rule is to make a subset of the middle layer neurons fire only when x
or a noisy version of it, is presented. The preferred direction vectors of the middle layer neurons
are encoded in the synaptic weights between the first and middle layer neurons. Consequently,
changing the preferred direction vectors corresponds to changing the connection weights using a
local learning rule which we will outline in detail in the finished version.
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2 Figures

Figure 1: Input vector clustering of a 3-dimensional ensemble, presented with 6 evenly
spaced x. (a) The initial clustering, before any input has been given. (b) Each input vector
has been shown for 2 seconds of simulation time, with intercepts set to cos(π6 ). Gray plates
show the area of attraction for each input vector. (c) Same as b, with intercepts chosen to
give pi = 1

6 . (d) Same as b, with intercepts set to cos(π3 ).
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Figure 2: A two-dimensional ‘preferred direction’ (or ‘encoding’) vector of a neuron, e, is
shifted to the first input vector to be presented, k1, where it will not respond to k2. This
required that k1 · k2 < c, where c is the intercept of e. The intercept of the neuron is
depicted by shading the responding region. Note that before e was shifted, it was sensitive
to both k1 and k2.

Figure 3: Design of an associative memory in Nengo. Yellow circles are “passthrough
nodes”, blue circles are NEF ensembles, white circles are scalar [0, 1] ensembles with positive
intercepts and preferred direction vectors, orange connections are inhibitory, and green
connections are modulatory. The “bias” is a constant scalar input of 1 (see text for details).
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Figure 4: One-dimensional values stored in an associative memory containing 2,500 spiking
LIF neurons in its memory ensemble. The vocabulary sizes and dimensions are varied in
separate tests. Each test first learns all associations until convergence, and then recalls all
values in the same order. The error is measured using a post-synaptic filter of 0.02, from
110ms until 130ms after each key is shown. Every test is repeated 25 times, with the mean
and standard deviation reported. (Left) The RMSE over all values. (Right) The percentage
of values recalled “correctly” (RMSE < 0.02). (Bottom) The average number of neurons
that fire in response to each key (note the standard deviation between trials is close to
zero). The theoretical optimal is 2500/n.
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