
Learning 3D Object-Oriented World Models from Unlabeled Videos

Eric Crawford 1 2 Joelle Pineau 1 2

Abstract

The physical world can be decomposed into dis-
crete 3D objects. Reasoning about the world in
terms of these objects may provide a number of
advantages to learning agents. For example, ob-
jects interact compositionally, and this can sup-
port a strong form of generalization. Knowing
properties of individual objects and rules for how
those properties interact, one can predict the ef-
fects that objects will have on one another even if
one has never witnessed an interaction between
the types of objects in question. The promise of
object-level reasoning has fueled a recent surge
of interest in systems capable of learning to ex-
tract object-oriented representations from percep-
tual input without supervision. However, the
vast majority of such systems treat objects as
2-dimensional entities, effectively ignoring their
3-dimensional nature. In the current work, we
propose a probabilistic, object-oriented model
equipped with the inductive bias that the world
is made up of 3D objects moving through a 3D
world, and make a number of structural adapta-
tions which take advantage of that bias. In a se-
ries of experiments we show that this system is
capable not only of segmenting objects from the
perceptual stream, but also of extracting 3D infor-
mation about objects (e.g. depth) and of tracking
them through 3D space.

1. Introduction
The study of intelligent systems in nature suggests that treat-
ing the world as made up of objects is worthwhile. For
example, evolution has endowed humans and many animals
with built-in (or at least developmentally inevitable) machin-
ery for discovering, tracking and reasoning about objects
(Carey, 2009). Thus, in building artificially intelligent sys-
tems, we should strive to equip our systems with the ability

1McGill University 2Mila. Correspondence to: Eric Crawford
<eric.crawford@mail.mcgill.ca>.

Workshop on Object-Oriented Learning at ICML 2020. Copyright
2020 by the author(s).

to extract object-like representations from perceptual input,
and to reason in terms of those object-like representations
in a way that exploits their compositionality.

The field of deep learning has recently seen a surge of inter-
est in neural networks that make use of explicit object-like
representations. In the current work we are interested, in
particular, with what we will call object-oriented world mod-
els (OOWM). These are probablistic models which treat the
world as being made up of objects, and typically allocate
separate representational resources (e.g. latent variables)
for each object. The per-object variables may themselves
be further disentangled; they may, for example, contain
explicit representations of object properties like position,
velocity, or appearance. Such models are attractive in that
they jointly learn how to extract object-like representations
from raw perceptual input (images or videos) while at the
same time learning how objects behave and interact. They
often demonstrate improved scene-modeling performance
(Burgess et al., 2019), and their learned representations can
be useful in downstream tasks (Veerapaneni et al., 2019).

The majority of existing OOWMs fall into one of two camps:
scene-mixture models and spatial attention models (using
terminology from (Lin et al., 2020)), which differ primar-
ily in how the latent object representations are grounded in
visual input. Scene-mixture models represent each object
with a soft, image-sized ownership mask, while spatial at-
tention models model an object using a 2D bounding box.
One salient feature of both these styles of representation is
that they are fundamentally two-dimensional. In the current
work, we aim to go beyond this assumption, proposing an
OOWM that explicitly models objects as 3D entities existing
in a 3D world.

Embracing the 3D nature of the world has a number of
potential advantages for an OOWM. First, it enables the
extraction of 3D information about objects (e.g. depth),
which may be required for performing certain downstream
tasks, and which is largely invisible to 2D models. Moreover,
acknowledging that objects exist in a 3D world may support
richer inferences, such as making reasonable predictions
about what happens to objects that pass out of view (e.g.
they keep moving in the same 3-dimensional direction until
some external force intervenes).

In the current work we propose an OOWM that models dy-



Learning 3D Object-Oriented World Models from Unlabeled Videos

namic 3D objects moving through static 3D environments.
For modeling dynamic objects, we employ a representation
which disentangles 3D object position from other object
properties. For modeling the static elements of a 3D scene,
we propose a solution based on recent work on learning
structured representations of static 3D environments from
posed videos, namely Scene Representation Networks (Sitz-
mann et al., 2019). Finally, we present a neural network
capable of learning to extract both dynamic and static repre-
sentations from posed (but otherwise unlabeled) videos.

2. Related Work
The vast majority of past work on OOWMs can be charac-
terized as either scene-mixture models (Greff et al., 2017;
van Steenkiste et al., 2018; Greff et al., 2019; Burgess et al.,
2019; Engelcke et al., 2019; Kipf et al., 2019; Veerapaneni
et al., 2019) or spatial attention models (Eslami et al., 2016;
Kosiorek et al., 2018; He et al., 2018; Crawford & Pineau,
2019; 2020; Jiang et al., 2019; Wang et al., 2019), and some
works even use both kinds of representation (Zhu et al.,
2019; Lin et al., 2020). However, all these works effectively
treat objects as 2D entities on a 2D plane. While a few of
them do attempt to infer the relative depth of objects (Craw-
ford & Pineau, 2019; Veerapaneni et al., 2019), this is only
used to to determine z-order when rendering the objects to
an output image, and does not constitute a true 3D represen-
tation. To date, the only OOWM that we are aware of with a
truly 3D notion of objects is (Chen & Ahn, 2020). However,
that model does not allow for moving objects, and does not
employ a structured 3D representation of the non-object
elements of a scene (e.g. walls, floors). It may also have
scaling issues: it allocates a separate internal object slot
for every cell of a 3D grid superimposed over the scene, so
its runtime scales with the scene volume. BlockGAN is a
related model with 3D objects (Nguyen-Phuoc et al., 2020);
however, it only provides for scene generation, and cannot
learn to detect objects from perceptual input.

3. Problem Setting
We assume episodic interactions with an environment with
a particular structure. Let {S1, . . . , SN} be a set of static
3D scenes. At the start of each episode, a scene index
n ∈ {1, . . . , N} is sampled uniformly at random, yield-
ing static scene Sn. The sampled scene is then popu-
lated with dynamic elements, specifically a camera and
a set of objects. For timestep t, let Ct be the camera
pose, and let Ot = {o1,t, . . . ok,t} be the set of dynamic
objects, where oi,t captures attributes of the i-th object.
At the beginning of the episode, we sample an initial set
of dynamic elements C0, O0 ∼ P0(C0, O0|Sn). The ob-
jects are then propagated forward in time by sampling
Ct, Ot ∼ P (Ct, Ot|Ct−1, Ot−1, Sn). That these distribu-

tions condition on Sn represents the fact that the dynamics
of objects are determined in part by static elements; for
example, moving objects may be obstructed by walls. Each
timestep, a pinhole camera model F is used to render an
image It = F (Ct, Ot, Sn).

We will explore a setting in which an agent is trying to learn
disentangled representations of the objects and static scene
elements that it encounters. Thus we assume distributions
P0 and P governing the dynamic elements are unknown, as
are the static scene representations Sn. For each episode, the
agent has access only to the static index n for the episode,
as well as It and Ct for each timestep. Overall the training
data for an episode is:

n, (I0, C0), (I1, C1), . . . , (IT−1, CT−1) (1)

The fixed set of static scenes for training may be regarded as
a low-complexity “nursery” environment in which the agent
can discover objects and their properties, in preparation for
operating in more complex environments in the future.

4. Learning to Model Static Scene Elements
For modeling static elements of a scene we employ the
framework of Scene Representation Networks (SRN) (Sitz-
mann et al., 2019). Each static 3D scene Sn is modeled as a
differentiable, parameterized function φn : R3 → Rf (e.g.
multi-layer perceptron (MLP)) which maps points in 3D
space to feature vectors.

The SRN framework provides a differentiable raymarch-
ing algorithm R which can be used to render the scene
represented by function φn from the viewpoint of a given
camera pose. We can use this algorithm, along with our
posed training videos, to train φn to represent Sn. Let-
ting B(t) = R(C(t), φn), we minimize

∑T−1
t=0 L(B(t), I(t))

(where L is some image loss) using gradient descent. To
generate the networks φn, we use a hypernetwork (a neu-
ral network that outputs neural networks) mapping from a
scene index to an SRN, i.e. φn = H(n) (so in training φn
we are actually training the weights of H).

One convenient feature of SRNs is that they lack any means
of representing dynamic or contingent scene elements, e.g.
objects that move or change appearance over time, or even
static objects which are not present every episode. Notice,
in particular, that the functions φn only take a spatial co-
ordinate as input; the features assigned by the network to
a given 3D location in a given scene are not permitted to
vary with time or episode number. This property is useful to
us because the SRN will only be able to account for static
scene elements, while incurring a large error at pixels that
belong to dynamic objects. We can thus think of the im-
ages rendered by the SRNs as backgrounds for our training
videos. For handling the dynamic objects, we need a dif-



Learning 3D Object-Oriented World Models from Unlabeled Videos

ferent kind of representation and accompanying inference
network, outlined in the next section.

5. Learning to Model Dynamic Objects
We designed a novel neural network to handle the task of
discovering and tracking dynamic objects. This network is
inspired by SQAIR (Kosiorek et al., 2018), SILOT (Craw-
ford & Pineau, 2020) and SCALOR (Jiang et al., 2019).
However, whereas those models conceive of objects as 2D
bounding boxes on a 2D plane, our proposed network mod-
els objects as 3D entities moving through a 3D world (only
a fraction of which will be in view at any given time).

The primary data type in our network is a set of objects, each
set having space for K ∈ N object slots. Each object set
contains a collection of named variables, called attributes,
and attributes can be indexed by slot k and timestep t. For a
generic object set O , the main attributes are:

Owhere-3D
k,(t) ∈ R3 Owhat

k,(t) ∈ RA Opres
k,(t) ∈ [0, 1]

Owhere-3D
k,(t) gives the 3D position of object k at time t, Owhat

k,(t)
is an unstructured vector capturing other features such as
appearance, and Opres

k,(t) specifies the extent to which the
object exists, or is turned on. Different object sets may omit
some of these attributes or add others.

Our network is composed of a number of modules (discov-
ery, propagation and rendering as first proposed in SQAIR
(Kosiorek et al., 2018), plus an additional selection module),
each running once per timestep of the input video. Mod-
ules communicate by passing around object sets. We define
three primary object sets: discovered objects D , propagated
objects P and selected objects S . The flow of computation
is depicted in Fig. 1, and runs as follows:

1. Propagation takes in selected objects from the previ-
ous timestep S(t−1), and updates them using informa-
tion from the new frame I(t) and camera pose C(t),
yielding propagated objects P(t).

2. Discovery takes in input frame I(t) and predicts a set
of 3D objects for the frame. This module conditions
on P(t) which helps it to avoid discovering objects that
are already accounted for by some object in P(t). The
resulting objects are D(t).

3. Selection takes in P(t) and D(t), and selects the K ob-
jects with largest values for the pres attribute (ensuring
that the number of objects propagated forward stays
constant over time), yielding selected objects S(t).

4. Rendering takes in selected objects S(t) and predicts
the 2D location, size, and appearance of all visible
objects given camera pose C(t). These are blended

with the background image B(t) rendered by the SRN
to produce a final output image Î(t).

We also have one additional module, Prior Propagation (also
present in SQAIR), which is not directly part of the object
tracking flow. This module is similar to Propagation (and
is in fact trained to give the same results as Propagation),
except that it does not have access to the input frames. Prior
Propagation is thus forced to learn to predict object trajecto-
ries, rather than tracking them. This can support additional
kinds of inference such as imagining future rollouts, which
may be useful in planning. Prior propagation conditions
its predictions on features of φn in a local neighbourhood
around each object, which should allow it to predict interac-
tions between dynamic objects and the static environment
(e.g. objects bouncing off of walls). This is one additional
benefit of using a structured 3D representation of the static
scene.

Additional details on the implementation of each module
are provided in Section C.

6. Training
To maximize learning stability, we train the network in 3
stages. In the first stage, we train the SRN network that mod-
els the static scene elements, specifically the hypernetwork
(which outputs φn) and learnable elements of the raymarch-
ing algorithm R. After this phase, the network is able to
achieve low reconstruction error for pixels that belong to
static elements, but is unable to model dynamic elements.
In the second stage, we train only the Discovery and Ren-
dering modules, hooking the output of the former up to the
input of the latter (essentially constituting a SPAIR network
(Crawford & Pineau, 2019), roughly an autoencoder with an
object-like latent representation). In this stage the network
learns to segment the objects in two dimensions, but does
not predict object depth and does not track objects over
time (each frame is handled in isolation). Finally, in the
third stage the network is fully wired up as shown in Fig
1, and trained to reconstruct the input frames. Weights of
SRN, Rendering, and parts of Discovery are frozen, while
Propagation, Prior Propagation and the remaining parts of
Discovery are trained. In this stage the network learns to
predict object depth and to track objects over time in 3D.

7. Experiments
We performed experiments in two simulated domains to test
whether our method is able to learn to discover and track
objects. Results are shown in Table 1 (metrics are described
in Section B). Qualitative results are shown in Section A.

Stationary Objects. In our first experiment, we test our sys-
tem on an environment containing stationary objects only,



Learning 3D Object-Oriented World Models from Unlabeled Videos

Figure 1. Schematic depicting the modules in our object discovery and tracking network. Each gray diamond represents a set of 3D
internal objects. Within the gray diamonds, the white pyramid represents the (known) camera pose, while the colored blocks are objects
tracked by the agent. The translucent object “tails” are meant to indicate where the objects were previously estimated to be, and correspond
to perceived object motion. The Prior Propagation module is not shown here.

in order to determine whether the network is capable of
segmenting objects, estimating their depth, and tracking
them through 3D space in this relatively simple scenario. To
test this, we generated a set of environments in Miniworld
(Chevalier-Boisvert, 2018) similar to the “Health Gathering”
scenario from Vizdoom (Kempka et al., 2016). To generate
the dataset, we first randomly generate N = 20 rooms, all
square but with different randomly selected textures. Each
episode, one of these rooms is sampled uniformly at random
and populated with “medkit” objects placed in random loca-
tions. In the Vizdoom scenario, the agent’s health decreases
over time, and the agent must collect medkits to stay alive.
Being able to estimate the 3D positions of the objects in this
scenario is highly relevant, as it would allow, for example,
planning a path for collecting all medkits as fast as possible.

Moving Objects. In the next experiment we test whether
our method can handle moving objects, which may present
additional challanges. If objects are guaranteed to stay still,
we can get a form of “temporal stereo” when the agent
undergoes translational motion, which can be used as a
signal about depth. When objects can move, that signal
becomes weaker. Additionally, moving objects can make
inter-object occlusion more common. In our moving object
scenario, we first created 10 separate static environments
(small mazes, rather than square rooms, to show that SRNs
can handle the added complexity). Each episode we pick
one at random and populate it with random colored blocks.
Each object flips a coin to determine whether it moves or not.
Objects that move pick a horizontal movement direction at
random, bouncing off of any walls they encounter.

AP ↑ 2D MOTA ↑ 3D MOTA ↑ 2-norm ↓
Stationary 0.715 0.726 0.730 0.240
Moving 0.726 0.718 0.602 0.758

Table 1. Object detection and tracking metrics (described in Sec-
tion B). Arrows indicate which direction is better.

8. Discussion
The quantitative results suggests that our method is generally
able to segment objects, estimate their depth, and track
them over time. However, inspection of qualitative results
suggests a number of areas for improvement. The network
is generally good at tracking object motion parallel to the
camera plane (i.e. side-to-side), but poor at tracking motion
where the depth of the object changes. This is likely due to
the former kind of motion being much more visually obvious
than the latter. The network also struggles somewhat with
object permanence; for example, it often lowers pres values
to 0 when an object passes out of sight or behind another
object. To remedy this in future development, we intend
to include a prior which encourages pres values to stay
constant over time.

In follow-up work, we also intend to more fully characterize
the sensitivity of the system to properties of the training data,
e.g. the fraction of objects that are moving, the fraction of
agent movements that are translational. We also intend to
investigate the quality of the learned prior, and the extent
to which the learned object trackers can generalize to more
complex environments than they were trained on.



Learning 3D Object-Oriented World Models from Unlabeled Videos

References
Burgess, C. P., Matthey, L., Watters, N., Kabra, R., Higgins,

I., Botvinick, M., and Lerchner, A. Monet: Unsupervised
scene decomposition and representation. arXiv preprint
arXiv:1901.11390, 2019.

Carey, S. The origin of concepts. Oxford University Press,
2009.

Chen, C. and Ahn, S. Object-oriented representation of
3d scenes. https://openreview.net/forum?id=BJg8 xHtPr,
2020.

Chevalier-Boisvert, M. gym-miniworld environment for
openai gym. https://github.com/maximecb/gym-
miniworld, 2018.

Crawford, E. and Pineau, J. Spatially invariant, unsupervised object
detection with convolutional neural networks. In Thirty-Third
AAAI Conference on Artificial Intelligence, 2019.

Crawford, E. and Pineau, J. Exploiting spatial invariance for
scalable unsupervised object tracking. In Thirty-Fourth AAAI
Conference on Artificial Intelligence, 2020.

Engelcke, M., Kosiorek, A. R., Jones, O. P., and Posner, I. Genesis:
Generative scene inference and sampling with object-centric
latent representations. arXiv preprint arXiv:1907.13052, 2019.

Eslami, A., Heess, N., Weber, T., Tassa, Y., Szepesvari, D., Hinton,
G. E., et al. Attend, infer, repeat: Fast scene understanding
with generative models. In Advances in Neural Information
Processing Systems, pp. 3225–3233, 2016.

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., and
Zisserman, A. The pascal visual object classes (voc) challenge.
International journal of computer vision, 88(2):303–338, 2010.

Greff, K., van Steenkiste, S., and Schmidhuber, J. Neural ex-
pectation maximization. In Advances in Neural Information
Processing Systems, pp. 6691–6701, 2017.

Greff, K., Kaufmann, R. L., Kabra, R., Watters, N., Burgess,
C., Zoran, D., Matthey, L., Botvinick, M., and Lerchner, A.
Multi-object representation learning with iterative variational
inference. arXiv preprint arXiv:1903.00450, 2019.

He, Z., Li, J., Liu, D., He, H., and Barber, D. Tracking by anima-
tion: Unsupervised learning of multi-object attentive trackers.
arXiv preprint arXiv:1809.03137, 2018.

Jaderberg, M., Simonyan, K., Zisserman, A., et al. Spatial trans-
former networks. In Advances in neural information processing
systems, pp. 2017–2025, 2015.

Jiang, J., Janghorbani, S., De Melo, G., and Ahn, S. Scalor:
Generative world models with scalable object representations.
In International Conference on Learning Representations, 2019.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and Jaśkowski,
W. ViZDoom: A Doom-based AI research platform for visual
reinforcement learning. In IEEE Conference on Computational
Intelligence and Games, 2016.

Kipf, T., van der Pol, E., and Welling, M. Contrastive learning
of structured world models. arXiv preprint arXiv:1911.12247,
2019.

Kosiorek, A., Kim, H., Teh, Y. W., and Posner, I. Sequential
attend, infer, repeat: Generative modelling of moving objects.
In Advances in Neural Information Processing Systems, pp.
8606–8616, 2018.

Kuhn, H. W. The hungarian method for the assignment problem.
Naval research logistics quarterly, 2(1-2):83–97, 1955.

Lin, Z., Wu, Y.-F., Peri, S. V., Sun, W., Singh, G., Deng, F., Jiang,
J., and Ahn, S. Space: Unsupervised object-oriented scene
representation via spatial attention and decomposition. arXiv
preprint arXiv:2001.02407, 2020.

Milan, A., Leal-Taixé, L., Reid, I., Roth, S., and Schindler, K.
Mot16: A benchmark for multi-object tracking. arXiv preprint
arXiv:1603.00831, 2016.

Nguyen-Phuoc, T., Richardt, C., Mai, L., Yang, Y.-L., and Mitra, N.
Blockgan: Learning 3d object-aware scene representations from
unlabelled images. arXiv preprint arXiv:2002.08988, 2020.

Redmon, J. and Farhadi, A. Yolo9000: better, faster, stronger.
arXiv preprint, 2017.

Sitzmann, V., Zollhöfer, M., and Wetzstein, G. Scene represen-
tation networks: Continuous 3d-structure-aware neural scene
representations. In Advances in Neural Information Processing
Systems, pp. 1119–1130, 2019.

van Steenkiste, S., Chang, M., Greff, K., and Schmidhuber, J.
Relational neural expectation maximization: Unsupervised
discovery of objects and their interactions. arXiv preprint
arXiv:1802.10353, 2018.

Veerapaneni, R., Co-Reyes, J. D., Chang, M., Janner, M., Finn,
C., Wu, J., Tenenbaum, J. B., and Levine, S. Entity abstraction
in visual model-based reinforcement learning. arXiv preprint
arXiv:1910.12827, 2019.

Wang, D., Jamnik, M., and Lio, P. Unsupervised and interpretable
scene discovery with discrete-attend-infer-repeat. arXiv preprint
arXiv:1903.06581, 2019.

Zhu, G., Wang, J., Ren, Z., Lin, Z., and Zhang, C. Object-
oriented dynamics learning through multi-level abstraction.
arXiv preprint arXiv:1904.07482, 2019.

https://github.com/maximecb/gym-miniworld
https://github.com/maximecb/gym-miniworld


Learning 3D Object-Oriented World Models from Unlabeled Videos

A. Qualitative Results
A.1. Health Gathering

Qualitative results are shown for the Health Gathering envi-
ronment in the top of Fig A2. This example shows that the
network is largely able to learn to segment and track these
stationary objects. Looking at the overhead view (row 4 in
each example), we can study some of the errors made by the
network. We see the network’s lack of object permanence;
once objects have moved out of view, the network lowers
their pres value to near 0 and the objects cease to be selected
by the Selection module. As stated in Section 8, we expect
this can be resolved by using a prior which encourages pres
values to stay constant over time (encoding the fact that
objects tend not to spontaneously disappear).

A.2. Moving Boxes

Qualitative results are shown for the Moving Boxes envi-
ronment in the bottom of Fig A2. As before, looking at the
overhead view can reveal some of the model’s deficiencies.
Consider the object assigned the gray color by the network.
The network does well at tracking the projections of these
objects onto the image plane, but in both cases has a dif-
ficult time tracking object motion that is perpendicular to
the image plane (i.e. tracking change in depth). Improving
these aspects of performance will be a target of future work.

B. Metrics
We employed 4 metrics for measuring the performance of
the object tracking network.

Average Precision (AP) is a standard measure of object
detection performance (Everingham et al., 2010). This as-
sesses the quality of the bounding boxes proposed by the
network, independent of the network’s ability to track ob-
jects coherently over time. We use a relatively permissive
IOU (Intersection over Union, a measure of how well a
ground-truth bounding box is accounted for by a predicted
bounding box) threshold, since we do not require the agent
to output pixel-perfect bounding boxes.

Multi-object Tracking Accuracy in 2D (MOTA 2D) is a
standard measure of object tracking performance (Milan
et al., 2016). This assesses the networks ability to assign
consistent identifiers to objects over time, as well as abil-
ity to localize objects. This measures 2D object tracking,
meaning it only cares about 2D location of objects on the
camera plane, and doesn’t take depth into account. At each
frame we only take into account ground-truth objects that
are either currently visible, or were visible at some past time
step. We only consider objects that have a pres value of at
least 0.5, and use a low threshold on IOU.

Multi-object Tracking Accuracy in 3D (MOTA 3D) is a

version of MOTA adapted to 3 dimensions. Since our ob-
jects are modeled only as 3D points rather than 3D bounding
boxes, we use Euclidean distance to measure the distance
between a ground-truth object and a predicted object. Again,
we only consider objects with pres values at least 0.5, and
consider a predicted object to be tracking a ground-truth
object when the distance between them is less than 3 units
(where 1 unit roughly corresponds to a meter).

2-norm. Measures the average 2-norm between ground-
truth objects and the predicted objects assigned to them.
Assignment is done using the Hungarian algorithm (Kuhn,
1955) on the objects’ 2D bounding boxes.

C. Module Details
The idea of an Object-Oriented World Model with separate
modules for discovering objects, propagating them forward
in time (both with and without information from the current
frame), and finally rendering them to an output image, was
first introduced in SQAIR (Kosiorek et al., 2018). SCALOR
(Jiang et al., 2019) and SILOT (Crawford & Pineau, 2020)
subsequently made scalability-related improvements, and
added the selection module. Our model can roughly be
regarded as a 3D version of these past models.

Here we go into more detail about each of the modules.

C.1. Discovery

This module is very similar in structure to the convolutional
networks used in supervised object detection, such as YOLO
(Redmon & Farhadi, 2017). It takes in an input image and
processes it with a convolutional neural network. At each
cell of the output of that network, a structured 2D object rep-
resentation is created, specifically a bounding box (which is
required to be inside the receptive field of that convolutional
cell), a presence value, and an unstructured feature vector
that is intended to capture the object’s appearance. A depth
value is also predicted for each object, and is used along
with C(t) to predict the object’s location in 3D space.

In order to avoid rediscovering objects that are already ac-
counted for by a propagated object, this module’s prediction
for the pres attribute conditions on nearby propagated ob-
jects, achieved using a Gaussian attention step. Each poten-
tial discovered objects “pays attention to” any propagated
objects in a local neighbourhood around its 2D location on
the current camera, just before predicting the pres attribute.

In the second stage of training (see Section 6), this network
is hooked up directly to the Rendering module. The combi-
nation of these two modules essentially constitutes a SPAIR
network (Crawford & Pineau, 2019), a network designed
for scalable unsupervised object detection in 2D images.



Learning 3D Object-Oriented World Models from Unlabeled Videos

Figure A2. Qualitative results on the Health Gathering environment (top) and Moving Boxes environment (bottom). Timestep increases
from left to right. Rows, in order from top to bottom are: 1. ground truth image, 2. reconstructed image, 3. reconstructed image with
object bounding boxes, predicted (color) and ground-truth (black), 4. top-down view of environment showing objects. The red triangle is
the camera. Ground-truth objects are stars, predicted objects are circles. Transparency of circles indicates pres value predicted by the
network. Colors of predicted objects are the same in rows 3 and 4. Refer to Section A.1 for a discussion of the errors made in these
examples.



Learning 3D Object-Oriented World Models from Unlabeled Videos

C.2. Propagation

The role of the propagation module is to take in the se-
lected objects from the previous timestep S(t−1), and use
information provided by the current frame I(t) to propagate
those objects forward in time, yielding the set of propagated
objects for the current timestep P(t).

In simple terms, the problem solved by the propagation
module is this: given the object’s 3D location and appear-
ance from the previous timestep, how does one intelligently
use information contained in the new frame I(t) to update
one’s estimate of the object’s location and appearance at the
current timestep? One possibility would be to just condition
on the entirety of the new frame; however, it is likely that
the majority of the information contained in that new frame
is irrelevant to updating one’s estimate of a single object.
Under the assumption that the object will not move far be-
tween frames, we need only pay attention to a small region
of the new frame, corresponding to where the object could
feasibly have moved.

More concretely, we take the 3D location of the object
from the previous timestep, and project it onto the current
(known) camera location; this essentially says where we
would expect to find the object in frame I(t) assuming that
it didn’t move. Next, we delineate a region around this lo-
cation where the object could conceivably have moved. To
do this, we use the object size from the previous timestep,
multiplied by a fixed constant. The use of the object size
from the previous timestep is motivated here by the assump-
tion that the size of an object’s silhouette cannot change too
much between frames provided that neither the camera nor
the object are rotating too quickly (relative to the framerate
at which the videos were captured). Next, we differentiably
extract the pixels inside the delineated region using Spatial
Transformers (Jaderberg et al., 2015), i.e. extract a glimpse.
This glimpse is then processed by a convolutional neural
network.

Based on the output of that network, we then predict the new
2D location of the object in a coordinate frame determined
by the original glimpse’s dimensions. A second glimpse is
taken at this new location, and a second network processes
that glimpse. Nearing the end, we autoregressively predict
changes to thewhat, pres and depth attributes based on the
information extracted from the glimpses. And, finally, we
use the object’s predicted 2D location, in combination with
the predicted depth and known camera pose, to compute the
object’s new 3D location.

C.3. Selection

Selection is a simple module which takes in the discovered
objects D(t) and propagated objects P(t), and selects the
K objects with largest values for pres. This is intended

to keep the number of objects propagated forward fixed at
K as time increases. While this hard selection step is not
differentiable, we have not found this to cause problems as
long as K is selected to be large enough (e.g. larger than
the maximum amount of objects one expects the network to
have to track at any given time).

C.4. Rendering

The rendering module takes in the selected objects S(t),
finds their 2D location and size on the current camera C(t),
and predicts an appearance for each object (i.e. a small
grid of pixels, with color and alpha values at each pixel).
The appearances of the different objects are then combined
together, using Spatial Transformers (Jaderberg et al., 2015)
to place the objects in the correct location with the correct
size. Objects are rendered in order of decreasing depth,
so that closer objects may occlude further objects. The
objects are rendered on top of the background image B(t)

output by the SRN raymarching algorithm. This is similar to
the differentiable object-based renderers used in past work
(Crawford & Pineau, 2019; 2020; Lin et al., 2020; Jiang
et al., 2019).

C.5. Propagation Prior

This module is similar to the Propagation module, except
that it doesn’t have access to the input frames. Thus, rather
than looking at the new input frame to see how the object has
moved, the Propagation Prior has to make a prediction about
where the object has moved. It can base this prediction
on the object’s past, features of other objects, and even
on features of the local static environment defined by the
structured scene representation φn. The Prior Propagation
module is trained to match the predictions of the Propagation
module. The Prior Propagation module is the only module
that does not require knowledge of the pose of the camera;
the prior predictions are made purely in 3D space, and do not
need to depend on where the camera is (though, of course,
we may want to allow the camera/agent to affect predictions
about objects behavior; imagine a case where objects in the
world chase after or flee from the agent).


